gke running batch ml workload using redis and spot instances
We can setup kubernetes job to run our machine learning workload that uses redis to manage job queues and save eheckpoints to filestore. First we need to create our filestore by running the following command gcloud filestore instances create batch-aiml-filestore \ --zone=australia-southeast2-a \ --tier=BASIC_HDD \ --file-share=name="NFSVol",capacity=1TB \ --network=name="default" Next we will replace this filestore IP in our kubernete manifest but we need to get the ip address of our filestore gcloud filestore instances list \ --project=$PROJECT_ID \ --zone=australia-southeast2-a Next we can proceed by cloning GCP kubernetes samples repository. git clone https://github.com/GoogleCloudPlatform/kubernetes-engine-samples cd kubernetes-engine-samples/batch/aiml-workloads sed -i "\ s/ <FILESTORE_IP_ADDRESS> /192.168.147.21...