tensorflow - working with rnn basic methods




Creating RNN Cell

#create a basic rnn cell

import tensorflow as tf

# create a BasicRNNCell
rnn_cell = tf.nn.rnn_cell.BasicRNNCell(hidden_size)
# create a LSTMCell
rnn_cell = tf.nn.rnn_cell.LSTMCell(hidden_size)
# create a LSTMCell
rnn_cell = tf.nn.rnn_cell.GRUCell(hidden_size)


Reshape

reshape - reorganizes your tensor for example [1,2,3,4,5,6,7,8,9] into a specific shape.
For example,  if your execute  a = tf.reshape(t, [3, 3]), the array above gets converted into :-

array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])


Softmax 

The purpose of softmax is to flatten/normalizing input into a sum of 1.

a = tf.constant(np.array([[.1, .3, .5, .9]]))
print(sess.run(tf.nn.softmax(a)))

Outputs

[[ 0.16838508  0.205666    0.25120102  0.37474789]]

Lets walk through the following simple rnn code and you figure out what is going on here.







Comments

Popular posts from this blog

The specified initialization vector (IV) does not match the block size for this algorithm