lightgbm - simple race car example



Description of sample data

The sample data is pretty straight forward (intended to be that way). We have 3 main column which are:-

1. Horse power

2. Has Turbo

3. IsRaceCar - this is the label which basically conclusively tells us if this is a race car or not.

For example :-

CarCC,Turbo,IsRaceCar

3000,1,1 (race car)
2500,1,1
1300,0,0
1200,0,0


The sample code for learning and predicting from this dataset  is shown below :-

# coding: utf-8
# pylint: disable = invalid-name, C0111
import json
import lightgbm as lgb
import pandas as pd
from sklearn.metrics import mean_squared_error
import numpy as np
# load or create your dataset
print('Load data...')
df_train = pd.read_csv('cardata.csv', header=None, sep=',')
df_test = pd.read_csv('testcardata.csv', header=None, sep=',')
y_train = df_train[2].values
print(y_train)
y_test = df_test[2].values
X_train = df_train.drop(2, axis=1).values
X_test = df_test.drop(2, axis=1).values
# create dataset for lightgbm
lgb_train = lgb.Dataset(X_train, y_train)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)
# specify your configurations as a dict
params = {
'task': 'train',
'boosting_type': 'gbdt',
'objective': 'binary',
'metric': {'l2'},
'num_leaves': 31,
'learning_rate': 0.05,
#'feature_fraction': 0.9,
#'bagging_fraction': 0.8,
'bagging_freq': 5, 'min_data' : 1,
'verbose': 0
}
print('Start training...')
# train
gbm = lgb.train(params,
lgb_train,
num_boost_round=20,
valid_sets=lgb_eval,
early_stopping_rounds=5)
print('Save model...')
# save model to file
gbm.save_model('model.txt')
print('Start predicting...')
y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration)
# eval
print(y_pred)







Comments

Popular posts from this blog

The specified initialization vector (IV) does not match the block size for this algorithm

NodeJS: Error: spawn EINVAL in window for node version 20.20 and 18.20